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Project Overview 
The project’s domain background revolves around the area of Sentiment analysis. Sentiment analysis or Opinion Mining 

is a substantial task in Natural Language Processing, in Machine Learning and Data Science. It is used to understand the 

sentiment in social media, in survey responses, and healthcare for applications ranging from marketing to customer 

service to clinical medicine. In general Sentiment analysis main goal is to determine the attitude of a speaker or writer 

[1]. 

Historically, the Sentiment analysis originates back from WW2, during that era the primary motivation is highly political 

in nature. The rise of modern sentiment analysis happened only in the mid-2000s, and it focused on the product reviews 

available on the Web. Before 2000, the use of sentiment analysis has reached numerous other areas such as the 

prediction of financial markets and reactions to terrorist attacks. Moreover, the use of Sentiment analysis was useful for 

many problems such as irony detection and multi-lingual identification. Furthermore, over the years more research 

efforts are advancing from simple polarity detection to more complex identification of emotions and differentiating 

negative emotions such as anger and grief. Nowadays The area of sentiment analysis has become so large that anyone 

can face many challenges and issues when you try to keep track of all the activities in the area and the information 

overload [1]. 

In general, to process textual data, there is a need to convert the text and words to tangible data suitable for use for 

Exploratory data analysis, unsupervised and supervised learning. Nowadays, there are numerous feature extraction 

techniques that are used for this task. Some of them are the following: 

• Bag-of-words or one-hot encoding or Vector Space Feature Extraction Techniques which some of them are the 

following: 

 

o TF-IDF which stands for Term Frequency – Inverse Term Frequency, is used to examine the relevance of 

key-words to documents in corpus [2]. 

 

o Counter vectorization convert a collection of text documents to a matrix of token counts. This 

implementation produces a sparse representation of the counts of the words in a sentence [3]. 

 

Although the simplicity from these two feature extraction from text techniques there is a drawback, they lead to high 

dimensional spaces which from its part leads to the curse of dimensionality. However, recently more robust feature 

reduction methods have been developed which they contain the most related information from the textual data and 

reduce the textual information in a lower dimensionality space [4].  

• Word Embedding Techniques, Word Embedding solve the problem of high dimensional space. Word embedding 

is a technique for language modelling and feature learning, which transforms words in a vocabulary to vectors of 



continuous real numbers. The technique normally involves a mathematic embedding from a high-dimensional 

sparse vector space to a lower-dimensional dense vector space. Each dimension of the embedding vector 

represents a latent feature of a word [5]. Two-word embedding techniques will be used for the project 

combined with Deep Learning models: 

o Training word Embeddings 

o Use of pre-trained Embeddings 

Problem Statement 
The project that the proposal infers to is called “Movie Review Sentiment Analysis” a past Kaggle Competition. The 

competition’s main goal is to classify the sentiment of reviews from users from the Rotten Tomatoes dataset” and is 

located in Kaggle. The Rotten Tomatoes movie review dataset is a corpus of movie reviews used for sentiment analysis. 

This competition provides the chance to Kaggle users to implement sentiment-analysis on the Rotten Tomatoes dataset. 

The main task is to label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, 

positive. There are many obstacles such as sentence negation, sarcasm, terseness, language ambiguity, and many others 

make this task very challenging. In general, this particular Sentiment Analysis is a multiclass classification task to be 

faced [6].  

Metrics 
The performance of each classifier is evaluated using four metrics; classification accuracy, precision, recall and F1 score. 

It is using true positive (TP), true negative (TN), false positive (FP) and false negative (FN). True Positive (TP) stands for 

the number of correct predictions that a case is true which means that it is occurring when the positive prediction of the 

classifier agrees with a positive prediction of target variable. True Negative (TN) is the a number of correct predictions 

that a case is false, for example it occurs when both the classifier, and the target variable suggests the absence of a 

positive prediction. The False Positive (FP) is the number of incorrect predictions that a case is true. Finally, False 

Negative (FN) is the number of incorrect predictions that a case is false. The table below shows the confusion matrix for 

a two-class classifier. 

 

Rotten Tomatoes – Movie Review Sentiment Analysis requires all the submissions to be evaluated in their predictions’ 

accuracy over the Test Set [10]. Classification accuracy is defined as the ratio of the number of correctly classified cases 

and its formula to the sum of TP and TN divided by the total number of cases. 

 

Since the train set is unbalanced, F1 score as a secondary metric will be used which combines the other two metrics; 

precision and recall. Their formulas are the following: 

Precision is defined as the number of true positives (TP) over the number of true positives plus the number of false 

positives (FP). 

https://www.kaggle.com/c/movie-review-sentiment-analysis-kernels-only


 

The recall is defined as the number of true positives (TP) over the number of true positives plus the number of false 

negatives (FN). 

 

F1 score it considers both the precision and the recall. 

 

 

Analysis 

Data Exploration 

The dataset contains tab-separated files with phrases from the Rotten Tomatoes dataset. The train/test split has been 

preserved to benchmark, but the sentences have been shuffled from their original order. Each Sentence has been parsed 

into many phrases by the Stanford parser. Each phrase has a PhraseId. Each sentence has a SentenceId. Phrases that are 

repeated (such as short/common words) are only included once in the data [6]. 

 

The Train Set (source) has 4 columns and 156060 cases/rows. Its features are the following: 

1. PhraseId, is a unique Phrase identifier per phrase. Multiple phrases originate from the same Sentence/movie 

review and its type is “numeric”. We have 156060 unique PhraseIds in the train set. 

2. SentenceId, is a unique Sentence / review identifier. In the trainset we have 8543 unique Sentences/reviews in 

the train set. 

3. Phrase, it is type of “string” and it stems from the Sentence that is referenced by SentenceId. In total they are 

156060 unique Phrases and each phrase is the result from a unique split to the Sentence /review that belongs 

to.  

4. Sentiment: Is the Sentiment Labels and the target feature that must be predicted in the Test Set. Its labels are 

the following: 0 – negative, 1 - somewhat negative, 2 – neutral, 3 - somewhat positive, 4 – positive. 

 

The Test Set (source) has  3 columns and they are the following: 

1. PhraseId, is a unique Phrase identifier per phrase. Multiple phrases originate from the same Sentence/movie 

review and its type is “numeric”. We have 66292 unique PhraseIds in the test set. 

2. SentenceId, is a unique Sentence / review identifier. In the trainset we have 3310 unique Sentences/reviews in 

the test set. 

3. Phrase, it is type of “string” and it stems from the Sentence that is referenced by SentenceId. In total they are 

156060 unique Phrases in the test set and each phrase is the result from a unique split to the Sentence /review 

that belongs to. 

https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)
https://www.kaggle.com/c/movie-review-sentiment-analysis-kernels-only/data
https://www.kaggle.com/c/movie-review-sentiment-analysis-kernels-only/data


The following figure demonstrates how the cases look like from the train set: 

 

Figure 1 - Example Cases from Train Set 

During the training of the Machine and Deep Learning models the PhraseId and SetenceId will not be used since they do 

not provide any predictive advantage, they are just Id incremental numbers and they do not have any predictive ability 

during Machine Learning and Deep Learning training. However, the Phrases will definitely be used during the project. 

Furthermore, the dataset is unbalanced, which means that the train set does not provide almost equal number of cases 

for all the different types of sentiment that must be predicted. This is obvious at the following figure which depicts the 

distribution of the sentiment at the train set: 

 

Figure 2 - Sentiment Distribution from Train Set 



Sentiment Distribution 

Sentiment Count 

0 - negative 7072 

1 - somewhat negative 27273 

2 - neutral 79582 

3 - somewhat positive 32927 

4 - positive 9206 

 

It is obvious that the Sentiment “2 - Neutral” is the dominant one. Having an unbalanced dataset may lead us to 

classifiers/models that can not identify and classify cases that belong to positive or negative Sentiments and they may 

misclassify them. 

Moreover, the dataset does not contain any missing values, thus this help later to the analysis. At first by observing the 

dataset some “anomalies” were found hinting that there are some inconsistencies in the dataset. To be more specific 

when a word or a punctuation symbol is missing from a phrase then the Sentiment changes. Some examples pointing to 

this phenomenon are the following: 

• The absence of full stop punctuation: 

 

And here: 

 

 

• The absence of “comma (,)” in phrases changes the sentiment: 

 

• The absence of the Exclamation mark in phrases changes the sentiment: 

 

• Even the absence of a single word changes the sentiment: 

 

 



• The absence of several words changes the sentiment: 

 

• Furthermore, strange words / symbols such as (-RRB- -LRB-) appear in phrases: 

 

Based on these inconsistences to sentiments from phrase to phrase with just a little change they will be considered later 

for the Machine Learning and Deep Learning analysis. 

 

Exploratory Visualization 
 

EDA Question: who are the most Frequent uncleaned words 
One of the questions from Exploratory Data Analysis is what are the most frequent Unigrams, Bigrams and Trigrams in 

the uncleaned raw phrases from the Train Set. 

• Most Frequent uncleaned Unigrams: 

 

Most Frequent uncleaned Bigrams: 



 

• Most frequent uncleaned Trigrams: 

 

It is clear that many “dirty” words like “the”, “but” etc. are very frequent in phrases. As we are moving from 

unigrams to trigrams these words continue to appear as frequent words and more important tangible words such as 

“movie” or “film” are making their appearance. 

It is clear that in order to investigate the dataset and to answer questions that stem from the Exploratory Data 

Analysis, the text cleaning in mandatory. Text cleaning will help to remove redundant and uninformative words and 

will provide phrases with qualitative information. 



Text Cleaning 
Text cleaning is required to undercover all the hidden information from the phrases, the text cleaning steps are the 
following: The process that will be followed during cleaning is the following: 

1. Remove redundant space, custom word simplification and removing punctuation 

2. Remove Stop words 

3. Lemmatize the Phrases 

After the text cleaning process, the vocabulary size from the Train Set was reduced from 16540 words to 12622 
words. This means that 3918 words were noisy information and hinder all the tangible information. 

 

EDA Question: what the longest Words after Text Cleaning are 
The Biggest number of characters with the longest words in the Train Set is: 18 

• 'oversimplification', 'characteristically', 'transmogrification' 

 

The Second biggest number of characters with the longest words in the Train Set is: 17 

• 'counterproductive', 'uncharismatically', 'characterizations', 'eckstraordinarily', 'characterisations', 

'parapsychological', 'sanctimoniousness' 

 

The Third biggest number of characters with the longest words in the Train Set is: 16 

• 'unapologetically', 'characterization', 'schneidermeister', 'unsalvageability', 'underappreciated', 'quintessentially', 

'institutionalize', 'autobiographical', 'bruckheimeresque', 'overmanipulative', 'responsibilities', 'journalistically', 

'characterisation', 'enthusiastically', 'incomprehensible', 'manipulativeness', 'unsatisfactorily', 'preposterousness' 

 

EDA Question: Visualize a Wordcloud of most frequent words after Text cleaning 
 

 

The figure above, depicts all the tangible information that can be derived from the Train Set. It is obvious that words 

such as film and movie occur more often than others. 



 

EDA Question: who are the most Frequent words after text cleaning 
Now that Text cleaning took place, we return to the same question; what are the most frequent Unigrams, Bigrams and 

Trigrams in the cleaned phrases from the Train Set. 

• Most Frequent cleaned Unigrams: 

 

 

• Most Frequent cleaned Bigrams: 

 

• Most Frequent cleaned Trigrams: Text cleaning has a drawback, information was lost due to the fact that many 

repetitive words have disappeared, so no trigram word frequencies could be created. 



 

EDA Question: Can some Named Entities be extracted from the cleaned Text 
Named-entity recognition is a task of information extraction that seeks to locate and classify named entity mentions in 

unstructured text into pre-defined categories such as the person names, organizations, locations, medical codes, time 

expressions, quantities, monetary values, percentages, etc. source. 

The extracted Named Entities from the Text are the following: 

• ORGANIZATION: 'u.n.' 

• PERSON: 'mr.' 

• GPE/LOCATION: 'a.s.', 'u.s', 'u.s.' 

The conclusion that derives from the extracted named entities is that the phrases from the reviews do not refer in 

specifically to a Location or an Organization and even a Person. They are just very general and express only the crowd’s 

Sentiment. 

EDA Question: Identifying most significant / important words in Phrases from reviews from Train Set using TF-

IDF  
tf-idf is the acronym for Term Frequency–inverse Document Frequency. It quantifies the importance of a word in relative 

to the vocabulary of a collection of documents or corpus. The metric depends on two factors: 

 

Term Frequency: measures the occurrences of a word in a given document  

Inverse Document Frequency: the reciprocal number of times a word occurs in a corpus of documents Think about of it 

this way: If the word is used extensively in all documents, its existence within a specific document will not be able to 

provide us much specific information about the document itself. So, the second term could be seen as a penalty term 

that penalizes common words such as "a", "the", "and", etc. tf-idf can therefore, be seen as a weighting scheme for 

words relevancy in a specific document [11]. 

words TF – IDF coefficient 

good 5.262244 

time 5.131160 

story 5.125591 

character 4.990722 

like 4.867906 

one 4.744892 

make 4.644150 

movie 4.238848 

film 4.003974 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Named-entity_recognition


 

EDA Question: How is the visualization from  
t-SNE is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and 

tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and 

the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get 

different results [12]. To apply the phrases from plain textual form to a vector space, TF – IDF vectorizer was used [13]. 

Then the TF - IDF vectors were fed to an SVD dimensionality reduction model to reduce the sparse TF – IDF matrix to a 

dense one to vectors size of 30 and then the latter is fed to the t-SNE algorithm to reduce the dimensions from 30 to 2 

axes. The result is the following visualization:  

 

Figure 3 - TF - IDF vectorized Phrases visualized with t-SNE 

EDA Question: Can the phrases be clustered using Kmeans and what are the centers 
In order to cluster the phrases from the trainset, they must be applied to the TF-IDF vectorizer from sklearn [13]. To find 

the optimal number of clusters the use of Silhouette score was applied which measures whether or not a case is 

assigned to the current cluster. The Silhouette score presented that 12 clusters are the optimal number. Finally, to 

visualize again in 2 axes, t-SNE algorithm was applied to the distances of the cases from their cluster centers they were 

appointed to. The result is the following visualization: 



 

Figure 4 - Kmeans Clusters visualized with t-SNE 

The cluster centers that are most representative terms for each cluster are the following: 

Representative terms per cluster center: 

• Cluster 0:  time |story |interest |bad |go| run |tell |good |love |run time 

• Cluster 1: director bruce |bruce mcculloch |outstanding director |mcculloch |bruce |outstanding |director 

|funny |expect much |talent outstanding 

• Cluster 2: masterpiece elegant|elegant wit |wit artifice |artifice |elegant |masterpiece |wit |wilde play |wilde 

|play 

• Cluster 3: make |movie |film |make movie |well make |well |movies |make film |like |make movies 

• Cluster 4: memories one |fantastic visual |visual trope |one fantastic | trope| memories| fantastic| visual| one 

| daydream memories 

• Cluster 5: movie |bad |one |bad movie |like |action movie |see |good |action |good movie 

• Cluster 6: one |character |like |work |good |see |much |comedy |life |get 

• Cluster 7: macy thanksgiving| day parade| parade balloon| thanksgiving day |balloon |macy |thanksgiving 

|parade |day| comedy 

• Cluster 8: film |one |good film |good |first |like |action film |best |see |best film 

• Cluster 9: infamy |charm |charm little |say picture |respective |little |best thing |thing say |bullock hugh |cute 

moments 

• Cluster 10: way |new |York |new York |york city |get way |movie |city |find |long way 

• Cluster 11: anti feminist |feminist equation |familiar anti |equation |feminist |anti |familiar |career kid |kid 

misery |misery 

EDA Question: Can LDA (Latent Dirichlet Allocation algorithm) model topics in phrases 
Latent Dirichlet Allocation (LDA) is an algorithms used to discover the topics that are present in a corpus. 

 



LDA starts from a fixed number of topics. Each topic is represented as a distribution over words, and each document is 

then represented as a distribution over topics. Although the tokens themselves are meaningless, the probability 

distributions over words provided by the topics provide a sense of the different ideas contained in the documents [14]. 

Both K-means and Latent Dirichlet Allocation (LDA) are unsupervised learning algorithms, where the user needs to 

decide a priori the parameter K, respectively the number of clusters and the number of topics. If both are applied to 

assign K topics to a set of N documents, the most evident difference is that K-means is going to partition the N 

documents in K disjoint clusters (i.e. topics in this case). On the other hand, LDA assigns a document to a mixture of 

topics. Therefore, each document is characterized by one or more topics (e.g. Document D belongs for 60% to Topic A, 

30% to topic B and 10% to topic E). Hence, LDA can give more realistic results than k-means for topic assignment [15]. Its 

input is a bag of words, i.e. each document represented as a row, with each column containing the count of words in the 

corpus. In order to find the correct number of LDA topics a grid search based on the LDA model’s perplexity was applied 

and 12 topics was the optimal number [16]. The following figure illustrates the LDA topics depicted in 2 axes with the aid 

of t-SNE algorithm: 

 

Top representative keywords per topic: 

• Topic 0: movie | story | love | interest | minutes | hollywood | entertain | less | need | set 

• Topic 1: film | go | little | give | never | may | could | human | young | emotional 

• Topic 2: one | time | plot | watch | old | another | hard | bite | right | material 

• Topic 3: good | director | us | something | many | cast | sense | humor | want | laugh 

• Topic 4: make | see | movie | would | one | without | ever | nothing | long | kind 

• Topic 5: get | feel | well | movies | best | first | try | year | show | know 

• Topic 6: character | work | comedy | funny | bad | world | drama | screen | big | charm 

• Topic 7: people | think | play | leave | kid | often | might | things | moments | face 

• Topic 8: like | look | enough | end | seem | self | live | still | run | move 

• Topic 9: life | come | act | action | two | really | every | man | great | real 

• Topic 10: much | new | audience | better | family | script | performance | heart | cinema | full 



• Topic 11: even | way | take | find | turn | back | keep | also | almost | thriller 

EDA Question: Can the words from the phrases visualized in 3D axes 
Examining the phrases from the reviews back to words and try to visualize the words in 3D axes now using again the t-

SNE algorithm. Here in order to convert the words into a tangible form the Word Embeddings technique will be used. 

Word embedding is one of the most popular feature representation of document vocabulary. It is capable of capturing 

context of a word in a document, semantic and syntactic similarity, relation with other words Word embeddings are 

vector representations of a particular word. Word2Vec is one of the most popular technique to learn word embeddings 

using shallow neural network. It was developed by Tomas Mikolov in 2013 at Google [17]. To illustration below depicts 

word embeddings from words by the phrases from the trainset. The words were applied to a trained word2vec model 

and reduced their dimensions to 3 with the help of t-SNE algorithm. 

 

EDA and Unsupervised Learning Summary 
During EDA it was clear and inevitable that text cleaning must be applied in order to discover how the people express 

from sentiment to sentiment. 

Furthermore, during EDA various insights have been discovered from word frequencies, bigrams, trigrams, named 

entities, wordclouds, most relevant words per sentiment. 

During Unsupervised Learning 2 major dimensionality reduction techniques were applied; SVD and PCA. SVD as a 

formula to reduce the dimensions from the TF - IDF matrix to 30 dimensions and PCA as a parameter inside t-SNE 

algorithm. Phrases / reviews and words visualizations in 2D and 3D were created with the aid of t-SNE depicting the 

phrases in the cartesian system, Kmeans clustering, LDA Topic Modeling and Word Embeddings. 

 



 

 

Algorithms and Techniques 
 

The next process from EDA and Unsupervised Learning is the Supervised Learning. The goal of this capstone project is to 

evaluate 3 different feature extraction / representation techniques and apply them in Machine Learning and Deep 

Learning predictive models. To sum up the following experiments will be performed: 

1. Create Machine Learning models with 

o Feature Extraction using TF – IDF 

o Download and use of pretrained Word Embeddings for Feature Extraction. 

2. Create Deep Learning models with 

o Live on-premise training for Word Embeddings 

o Download and use of pretrained Word Embeddings for Feature Extraction 

In every experiment I will evaluate my models with train – validation split with ratio of 80 / 20 to evaluate the models’ 

performance. 

The Machine Learning models that will be used are the following 

• Logistic Regression (LR), Logistic Regression, the most prevalent algorithm for solving industry scale problems, 

although its losing ground to other techniques with progress in efficiency and implementation ease of other 

complex algorithms. 

• K-Nearest Neighbors (KNN), is a simple machine learning algorithm that categorizes an input by using its k 

nearest neighbors. K-NN is non-parametric, which means that it does not make any assumptions about the 

probability distribution of the input. This is useful for applications with input properties that are unknown and 

therefore makes k-NN more robust than algorithms that are parametric. 

• Classification Trees (CART), Decision trees cut feature space in rectangles which can adjust themselves to any 

monotonic transformation. Since decision trees are designed to work with discrete intervals or classes of 

predictors 

• Naive Bayes models (NB), naive Bayes classifiers are a family of simple "probabilistic classifiers" based on 

applying Bayes' theorem with strong (naive) independence assumptions between the features 

• Support Vector Machines (SVM), A Support Vector Machine is a supervised machine learning algorithm that can 

be employed for both classification and regression purposes. SVMs are more commonly used in classification 

problems and as such, SVMs are based on the idea of finding a hyperplane that best divides a dataset into two 

classes. 

• Random Forests (RF), Random forest is just an improvement over the top of the decision tree algorithm. The 

core idea behind Random Forest is to generate multiple small decision trees from random subsets of the data 

(hence the name “Random Forest”) 

• XGBoost (XGB), XGBoost is one of the state-of-the-art algorithms. XGBoost is a part of an ensemble of classifiers 

which are used to win data science competitions. XGBoost is similar to gradient boosting algorithm but it has a 

few tricks up its sleeve which makes it stand out from the rest. 

• Ensemble after training and evaluation, select the top performed Machine Learning Models using the statistical 

mode over the predicted classes from the validation set and later on the test set. 

The list above summarizes all the Machine Learning families. They will be used and evaluated each one of them and 

those with the best accuracy will be kept. 

The Deep Learning architectures that will be used is the following: 



• Long Short-term Memory Recurrent Networks (LSTM), Long Short Term Memory networks LSTMs are a special 

kind of RNN, capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber 

(1997) and were refined and popularized by many people in following work. They work tremendously well on a 

large variety of problems and are now widely used. LSTMs are explicitly designed to avoid the long-term 

dependency problem. Remembering information for long periods of time is practically their default behavior, 

not something they struggle to learn! All recurrent neural networks have the form of a chain of repeating 

modules of neural network. In standard RNNs, this repeating module will have a very simple structure, such as a 

single tanh layer. LSTMs also have this chain like structure, but the repeating module has a different structure. 

Instead of having a single neural network layer, there are four, interacting in a very special way [18]. 

• Bidirectional Long Short-term Memory Recurrent Networks (BiLSTM). A major issue with all the Recurrent 

networks is that they learn representations from previous time steps. Sometimes, you might have to learn 

representations from future time steps to better understand the context and eliminate ambiguity. Take the 

following examples, “He said, Teddy bears are on sale” and “He said, Teddy Roosevelt was a great President”. In 

the above two sentences, when we are looking at the word “Teddy” and the previous two words “He said”, we 

might not be able to understand if the sentence refers to the President or Teddy bears. Therefore, to resolve 

this ambiguity, we need to look ahead. This is what Bidirectional RNNs accomplish. The repeating module in a 

Bidirectional RNN could be a conventional RNN, LSTM or GRU [19]. 

• Convolutional Neural Networks (CNN). Convolutional Neural Networks are very famous for applications in image 

classification. The whole idea about ConvNets stems from the notion that by adding more and more layers to 

the network the DL model can understand more and more features from an image and categorize it easier and 

more efficiently [20]. Moreover, the same architecture presents great results with Text classification problems 

[21]. 

• Long Short-term Memory Recurrent Networks - Convolutional Neural Networks (LSTM - CNN). There are papers 

in the scientific literature that combine both LSTM and CNN to improve the DL model’s performance by 

deepening the network [22]. 

• Bidirectional Long Short-term Memory Recurrent Networks - Convolutional Neural Networks (BiLSTM - CNN), 

Following the precious paradigm lets took the liberty to combine and a bidirectional LSTM and a CNN together. 

Ensemble after training and evaluation the top performed Deep Learning Models using the statistical mode over the 

predicted classes from the validation set and later on the test set. 

The Deep Learning models were chosen based on the scientific literature and because the deeper the Deep Learning 

architecture the better fit to the data [5]. 

 

Benchmark 
The given dataset is a typical supervised learning problem. In Machine Learning and in general in many Kaggle 

Competitions XGB - Extreme Gradient Boosting models perform better than others [7]. So Extreme Gradient Boosting 

(XGB) as a benchmark will be picked and it will be tried to try to be the benchmark with other machine learning models. 

The more Machine Learning models the better, they may even try to outperform XGBoost. 

For the Deep Learning models, as a benchmark will be used the LSTM - Long Short-term Memory Recurrent Networks. 

The notion behind this pick is a philosophical principle which is called “Occam’s Razor” which says that between two 

explanations choose the one that is has the least speculations/assumptions [9]. In other words, sometimes follow the 

simplest ideas. Since LSTM is simpler to be implemented in code than the other 4 Deep Learning models as described 

above, then this model as a benchmark will be picked and I will try to be the benchmark with the rest Deep Learning 

models. Besides, LSTM models are widely used for Sentiment Analysis [8], so based on that I will try to find more 

effective Deep Learning models to increase their accuracy. 



Methodology 

Data Preprocessing 
At first, there must be mention that after EDA an odd conclusion was made. The dataset of this competition turned to 

have some unique features. we have only phrases as data. And a phrase can contain a single word. And one punctuation 

mark can cause phrase to receive a different sentiment. Also assigned sentiments can be strange. This means several 

things: 

• using stopwords can be a bad idea, especially when phrases contain one single stopword. 

• puntuation could be important, so it should be used 

• ngrams are necessary to get the most info from data 

As you can see sentence id denotes a single review with the phrase column having the entire review text as an input 

instance followed by random suffixes of the same sentence to form multiple phrases with subsequent phrase ids. This 

repeats for every single new sentence id (or new review per se). The sentiment is coded with 5 values 0= Very negative 

to 4=Very positive and everything else in between. 

A quick glance will show you that the data is a little weird for a sentiment corpus: 

• Phrases of sentences are chopped up completely randomly. So, logic like sentence tokenization based on 

periods or punctuations or something of that sort doesn't apply 

• Certain phrases are with one single word! 

• For some phrases inclusion of a punctuation like a comma or a full stop changes the sentiment from say 2 to 3 

i.e neutral to positive. 

• Some phrases start with a punctuation like a backquote. 

• Some phrases end with a punctuation 

• There are some weird words such as -RRB-, -LRB- 

• All these weird aspects of this dataset can be helpful and may be predictive. Afterall, we are looking for patterns 

in data. Therefore, it would be easier for us to engineer features, I mean apart from the text features that can be 

extracted from the corpus. 

Implementation 
The Kaggle Competition is Kernel based, this means that all the code must be executed on Kaggle premises and  

The project follows typical predictive analytics hierarchy as shown in the following figure: 



 

Following the direction of the arrow as shown, with the dataset we chose the workflow of solving this problem will be in 

the following order: 

1. Loading the data 

2. Data Preprocessing and Data Exploration. 

a. Cleaning the text data from noisy information. 

b. Observing anomalies in the Train Set 

c. Measure word frequencies (Unigrams, Bigrams and Trigrams). 

d. Recognize named entities. 

e. Create wordclouds. 

f. Discover most significant words. 

3. Unsupervised Learning 

a. Train set reviews’ visualization over the 2-axis using t-SNE. 

b. K-means clustering over the reviews from train set and visualize the clusters using t-SNE. 

c. Topic Detection over the reviews from train set using LDA (Latent Dirichlet Allocation algorithm) and 

visualize the topics using t-SNE. 

d. Word Embeddings over the train set and visualize their similarity using t-SNE. 

e. Dimensionality reduction techniques such as PCA – Principal Component Analysis and SVD – singular 

value Decomposition may be used during Unsupervised Learning. 

For Steps 1 to 3 a Kaggle Python Jupyter notebook has been created can be found here. 

4. Machine Learning 

a. Apply Machine Learning models and measure their accuracy using TF – IDF as feature extraction. 

b. Apply Machine Learning models and measure their accuracy using word embeddings as feature 

extraction. 

https://www.kaggle.com/praxitelisk/moviereview-1-eda-and-unsupervised-learning


For the Step 4a, a Kaggle Python Jupyter notebook has been created can be found here. 

For the Step 4b, a Kaggle Python Jupyter notebook has been created can be found here. 

 

5. Deep Learning 

a. Apply Deep Learning models and measure their accuracy using the training of word embeddings as 

feature extraction. 

b. Apply Deep Learning models and measure their accuracy using pretrained word embeddings as feature 

extraction. 

 

For the Step 5a, a Kaggle Python Jupyter notebook has been created can be found here. 

For the Step 5b, a Kaggle Python Jupyter notebook has been created can be found here. 

 

6. Summarize, Conclusions, Future Work 

 

Refinement 
It must be noted that during the Machine Learning phase, having TF – IDF as feature extraction / representation 

technique Decision Trees, Random Forest, Extra Tree and Extra Trees with default parameters outperformed the 

XGBoost, XGBoost’s accuracy with default parameters was close to 0.54 and the other 4 ML models were close to 0.64 

to 0.65. Thus I concluded that Boosting Trees do not work with this feature representation and only the other 4 do work. 

So then there was a need to tune these top 4 Machine Learning models to improve accuracy and I left XGBoost model. 

From the other hand tuning the Deep Learning models was very time consuming due to time limitations from Kaggle 

Kernel run time. 

Results 

Model Evaluation and Validation 
The trainset was split in ratio 80:20 train and validation set respectively. In every execution the textual data was 

transformed in either TF – IDF matrix, trainable word embedding matrix or pre-trained word embeddings matrix.  

Machine Learning Models evaluated over the Test Set from Kaggle: 
The Machine Learning models that were developed along with 2 feature extraction techniques: 

• TF – IDF as feature extraction / representation 

• pre-trained word embeddings as feature extraction / representations 

 

• Machine Learning models and TF – IDF as feature extraction / representation: 

The trainset and the test set were converted via the TF – IDF vectorizer from sklearn. We applied and compared XGB 

model out of the box vs the rest of Machine Learning models. The following table show the accuracy results over the 

Test Set and submitted to the Kaggle: 

XGBoost model performed poorly with default parameters than most of the rest Machine Learning models. From this 

Execution only ExtraTrees, RandomForest, Logistic Regression and SVM were performed better than others. Their 

selection as based on their accuracy and their F1-score. Their performance results over the Validation and Test Set are 

the following:  

https://www.kaggle.com/praxitelisk/moviereview-2-ml-and-tf-idf
https://www.kaggle.com/praxitelisk/moviereview-3-ml-and-pre-trained-embeddings
https://www.kaggle.com/praxitelisk/moviereview-4-dl-and-train-word-embeddings
https://www.kaggle.com/praxitelisk/moviereview-5-dl-and-pre-trained-embeddings


 

ML Models Accuracy over the Validation 
Set 

F1-score over the 
Validation Set 

Accuracy over the Test Set 

Logistic Regression 0.633 0.639 0.5772 

Linear SVM 0.655 0.646 0.6089 

Extra Trees 0.628 0.616 0.5916 

Random Forest 0.622 0.601 0.585 

Ensemble ML Models with the 
statistical mode 

0.647 0.628 0.5966 

XGBoost 0.544 0.449 Did not apply for Test Set 
predictions due to low 
performance 

 

And after tuning and ensemble the above top performed ML models the performance results over the Validation and 

Test Set are the following: 

Tuned ML Models Accuracy over the 
Validation Set 

F1-score over the 
Validation Set 

Accuracy over the Test 
Set 

Tuned logistic Regression 0.658 0.543 0.610 

Tuned Linear SVM 0.656 0.545 0.607 

Tuned Extra Trees 0.628 0.510 0.591 

Tuned Random Forest 0.625 0.493 0.583 

Ensemble tuned models with the 
statistical mode over the 
predictions 

0.650 0.637 0.601 

 

In general, the ML models here have a good accuracy but low precision and high recall, this means that many cases from 

the validation set are misclassified in different sentiment class to the correct one, hence and the low F1-score. 

• Machine Learning models and pre-trained word embeddings as feature extraction / representation 

In this experiment we combine Machine Learning models with pre-trained word embeddings for each word from the 

train set. The pre-trained word embeddings have been downloaded from Stanford NLP GloVe. Their performance results 

over the Validation and Test Set are the following: 

 

ML Models Accuracy over the Validation 
Set 

F1-score over the 
Validation Set 

Accuracy over the Test 
Set 

Decision Tree 0.5041 0.171 0.521 

Extra Tree 0.5053 0.175 0.523 

Extra Trees 0.5055 0.176 0.521 

Random Forest 0.5044 0.167 0.525 

 

Here the ML models cannot cooperate well with pre-trained word embeddings, the accuracy and the F1-score are worse 

than before. The highlighted row is the model / outcome we can get from this experiment. 

 

 

 

https://nlp.stanford.edu/projects/glove/


 

Deep Learning Learning Models evaluated over the Test Set from Kaggle: 
The Deep Learning models that were developed along with 2 feature extraction techniques: 

• Trainable Word Embeddings as feature extraction / representation 

• Pre-trained word Embeddings as feature extraction / representations 

 

• Machine Learning models and Trainable Word Embeddings as feature extraction / representation: 

In this experiment we combine Deep Learning models with trainable word embeddings for each word from the train set. 

The Word Embeddings training took place via the Embedding Layers from Keras for each Deep Learning model. Their 

performance results over the Validation and Test Set are the following: 

 

DL Models Accuracy over the 
Validation Set 

F1-score over the 
Validation Set 

Accuracy over the Test Set 

LSTM 0.676 0.669 0.644 

Bidirectional_LSTM 0.653 0.636 0.645 

CNN 0.667 0.657 0.632 

LSTM_CNN 0.677 0.668 0.643 

Bidirectional_LSTM_CNN 0.673 0.671 0.645 

Ensemble tuned models with the 
statistical mode over the 
predictions 

0.689 
 

0.682 0.658 

 

The Deep Learning Models here perform better than the Machine Leaning models, also LSTM model seem to be 

outperformed by the other DL models. Still the models suffer from low precision and high recall and thus the low 

accuracy and F1-score. The highlighted row is the model / outcome we can get from this experiment. 

 

• pre-trained word embeddings as feature extraction / representation: 

In this experiment we combine Deep Learning models with pre-trained word embeddings for each word from the train 

set. The Word Embeddings have been downloaded from Stanford NLP GloVe. Their performance results over the 

Validation and Test Set are the following: 

 

DL Models Accuracy over the 
Validation Set 

F1-score over the 
Validation Set 

Accuracy over the Test Set 

LSTM 0.674 0.669 0.656 

BiLSTM 0.678 0.674 0.658 

CNN 0.682 0.675 0.657 

LSTM_CNN 0.681 0.676 0.659 

BiLSTM_CNN 0.685 0.678 0.660 

Ensemble tuned models with 
the statistical mode over the 
predictions 

0.696 0.691 
 

0.674 

 

https://nlp.stanford.edu/projects/glove/


The Deep Learning Models here with pre-trained word embeddings perform better than the previous experiment. 

Furthermore, the LSTM model seems to be outperformed by the other DL models. Still the models suffer from low 

precision and high recall and thus the low accuracy and F1-score. The highlighted row is the model / outcome we can get 

from this experiment. 

 

Justification 
There is room for improvement on the final results, the tuned ML models with TF – IDF as feature extraction made no 

significant improvement over the untuned ML models. There could be more ways we could improve the accuracy and 

F1-score. Via Deep Learning models, as long as more deep learning complex and in-depth models are introduced, they 

will fit the dataset, although the exhaustive experiments that must be done with the current installment, we should not 

forget that the dataset is very strange, and the sentiments alter even with the absence of a single word or punctuation. 

Conclusion 

Free-Form Visualization 
• One of the most satisfying visualization during EDA is the following it depicts all the most frequent words after 

text cleaning in the train set: 

 

• Another beautiful visualization is the LDA topics via t-SNE, this illustration depicts the assignment of phrases in 

topics and t-SNE helps to reduce the dimensions to 2 axes: 



 

• Finally, the last visualization is the fitting history and confusion matric for out best model which is the ensemble 

of Deep Learning models with pre-trained word embeddings as feature extraction / representation. 

 

Reflection 
• The most important and time-consuming part of the problem was data cleaning since there are many noisy data 

that must be cleaned. Once the data was prepared and ready, the next challenge is EDA and to focus on the 

word frequencies for unigrams, bigrams and trigrams. Data cleaning was a necessity for named entities 

extraction and identifying the most significant words in the trainset. 



• During Unsupervised Learning it was time consuming to find the optimal number of clusters and the optimal 

number of topics in LDA. But it was satisfying to visualize them using t-SNE. 

• During Machine Learning and Deep Learning models, it was unknown which model would fit the data with great 

accuracy and F1-score. Four experiments were made; 1 unsatisfactory and 3 successful experiments were 

achieved to improve accuracy and F1-score over the validation set. 

Improvement 
Deep Learning models show great potential and fit with great success the dataset. So, more in-depth deep learning 

models have to be developed. Tuning Deep Learning models is another way, however, it is very time consuming. 

Moreover, exhaustive Machine Learning tuning may be used. Furthermore, better and more innovative model ensemble 

techniques should be used. In addition, experimentation with text to feature extraction / representation. Finally another 

idea  is to use and download other Word embeddings from other sources the Web. 
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